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Abstract

NEIGHBORING EXTREMAL GUIDANCE FOR

SYSTEMS WITH PIECEWISE LINEAR

CONTROL USING TIME AS THE

REFERENCE VARIABLE

by

WILLIAM ABRAM LIBBY, B.S.A.E.

SUPERVISING PROFESSOR: Dr. David G. Hull

A guidance law for the control of a system in the neighborhood of a

nominal suboptimal trajectory is developed. The guidance law is demonstrated

using a lunar launch problem with constraints at orbit entry. A set of

precomputed gains is used by the guidance law to operate on an extremal path in

the neighborhood of the suboptimal trajectory. The guidance law and gains are

designed to minimize the change in the desired performance index while still

satisfying the final path constraints.

In the lunar launch problem, the nominal suboptimal trajectory minimizes

the final time using piecewise linear control. This trajectory is obtained to

provide a nominal control history. The guidance law is found by minimizing the

V



second variation of the suboptimal trajectory performance index subject to the

final constraints being satisfied. For the lunar launch problem, the guidance law

leads to a set of gains that relates deviations from the suboptimal trajectory to

required changes in the nominal control history. The deviations from the

suboptimal trajectory, used together with the precomputed gains, determines the

change in the nominal control history required to meet the final constraints while

minimizing the change in the final time.

Previous research has successfully used this guidance law by referencing

the nominal control and corresponding change in the control using horizontal

velocity. This research demonstrates the guidance law using time as the reference

variable. Insuring that the time-to-go on both the perturbed and nominal

trajectories are the same, determines the change in the control and update of the

final time that are to be applied to the perturbed trajectory.
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Chapter 1

Introduction

Optimal and suboptimal control theory are concerned with finding the

optimal control, and consequently the optimal trajectory, for a desired system. The

optimal control is found most often using numerical optimization. This method

many times leads to a less then optimal solution because the model used to describe

the system is not accurate. In addition, the initial conditions or system parameters

may not be known exactly, or the equations of motion may have been simplified.

As a resu't, when the optimal control is applied to the actual system, deviations

from the optimal trajectory occur, and the optimal trajectory is no longer realizable.

One solution to this problem is to generate a new optimal trajectory from the current

location to the final constraint manifold. However, because of computer

limitations, this solution is not feasible for guidance.

Neighboring optimal control is another method used to correct for

deviations from the optimal trajectory. Assuming the deviations from the optimal

trajectory caused by model errors and/or unknown perturbations are small, an

extremal guidance law can be developed to keep the perturbed trajectory in the

neighborhood of the optimal or nominal trajectory (see Ref 1, for example).

This research concentrates on developing a neighboring extremal guidance

law for systems using piecewise linear control and demonstrating the law with time

as the reference variable. A result of using piecewise linear control is that the

control is no longer a continuous function but a set of control parameters. These

I



2

control parameters are the nodes used to define the piecewise linear control. This is

also known as suboptimal control. The guidance law, using given deviations from

the suboptimal trajectory, updates the control parameters using a set of precomputed

neighboring extremal gains. The neighboring extremal gains are determined by

finding the change in the control parameters that will minimize the change in the

performance index and still satisfy the final constraints.

The guidance law is demonstrated using the lunar launch problem. The

lunar launch problem calls for placing a vehicle in a low lunar orbit in minimum

time while meeting conditions at orbit entry. Perturbations are caused in the

trajectory by altering thrust acceleration or lunar gravity from their nominal values

used in solving the nominal suboptimal control problem. Previous work [2] has

successfully demonstrated the guidance law using horizontal velocity as the

reference variable to determine the nominal control and change in the control.

When an attempt is made to implement the guidance law with time as the reference

variable, however, problems arise. The lunar launch problem is a free final time

problem and the perturbed final time is constantly changing. As a consequence, it

is not known exactly where the vehicle is located in relation to the nominal

trajectory. Therefore, the nominal control and change in the control that must be

applied is not known.

This research uses time as the reference variable, and as a result, the final

time becomes another parameter in the control vector. The variation of this

parameter yields the change in the final time, which is really the change in the time-

to-go from a location on the nominal trajectory specified by the reference time. The

change in the time-to-go is caused by deviations from the nominal trajectory at the
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location specified by the reference time. The overall change in the final time is then

given by the difference between the reference time on the nominal optimal trajectory

and the current time on the perturbed trajectory such that the time-to-go on both

trajectories is the same.

Chapter 2 discusses the general optimal control problem and reformulates

the problem in terms of suboptimal control. In Chapter 3, the neighboring

suboptimal guidance law is developed. The guidance law is then applied to the

lunar launch problem in Chapter 4, with the results shown in Chapter 5. General

conclusions and recommendations are discussed in Chapter 6.



Chapter 2

Optimal Control

2.1 Optimal Control Problem

A dynamical system is governed by a set of differential equations

)i = f(t,x,u) (2.1)

where x is a n-vector of the state variables and u is a m-vector of the control. The

goal is to guide the system from some specified initial conditions

to =to,, X0 =X0. (2.2)

to the prescribed final conditions

Vp (t/,x,) = O, (2.3)

by using the control u. Many controls will lead to trajectories that satisfy these

boundary conditions, but only one is optimal in terms of a desired performance

index. The optimal control, u, is determined by minimizing a performance index in

the form

J =0 (tf,xf). (2.4)

The general optimal control problem can now be stated as follows: find the control

history u(t) that minimizes Eq. (2.4), subject to the differential equations given by

Eq. (2.1) and the initial conditions of Eq. (2.2), while satisfying the final

constraints given in Eq. (2.3) [1].

The solution to this optimal control problem is usually too complicated to be

solved in closed form. The solution to the general optimal control problem may

4
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even be too complicated to be solved numerically. Therefore, the general optimal

control problem is reformulated as a suboptimal control problem so that a numerical

solution can be found.

2.2 Suboptimal Control Problem

In the suboptimal control, or parameter optimization, problem the control is

expressed as a parameter vector. This parameter vector contains the required

control at different points or nodes along the trajectory. The control between these

nodes is found by interpolating the control between appropriate nodes. In addition,

a free final time problem can be transformed to a fixed final time problem, and the

final time becomes the last parameter.

For this research, consider the class of piecewise linear functions as the set

of all possible controls. The one control is expressed as a parameter vector

UT = [ul,u 2,...,uh], (2.5)

where k is the number of control points or nodes along the trajectory. The control

between two control nodes is determined by linear interpolating between the two

control nodes. The continuous control function of the optimal control problem is

now a set of piecewise linear functions.

Free final time problems are transformed to fixed final time problems by

normalizing the variable of integration so that the integration limits are 0 to 1. To

normalize the variable of integration, the time is divided by the final time, and the

new variable of integration, •r, is defined as

T = - (2.6)
If
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The system dynamics can now expressed in terms of the new variable of integration

as

x.= -tf(t,,, x,U) =g(r t,,xU), (2.7)d•r

where

"T,= To, X0 = X0 , Tf--. (2.8)

In this fixed final time suboptimal control problem, the states are a function of the

parameterized control, u, and the free final time. Thus, a different parameter vector

is defined which includes not only the k control nodes but also the final time. This

new parameter vector, a, can be written as

aT=[, U2 ,..., Uk, t] (2.9)

With the new parameter vector, the object of the fixed final time suboptimal

control problem is to find the piecewise continuous control, where x1 (a) is

obtained by integrating the system dynamics

x0" = dr = g(', x, a) (2.1I0)
d-"

subject to the boundary conditions

"Tro- =o, x 0 = x0 , r1 =I, (2.11)

that minimizes the performance index

J =O(a,+,,xf (a)), (2.12)

and subject to the boundary constraints

/(ak+,I x, (a))= O. (2.13)

The optimal control vector, a, can be obtained using a nonlinear programming code

such as VF02AD.



Chapter 3

Neighboring Suboptimal Control

The solution to the suboptimal control problem yields a control history and

trajectory which minimize the desired performance index. For the suboptimal

control history to guide the vehicle to the final boundary constraints and minimize

the desired performance index, the vehicle must remain on the nominal trajectory.

This assumption is unrealistic, however, because in order for the vehicle to remain

on the nominal trajectory the true physical model and the model used to generate

the suboptimal control would have to be exactly the same. In reality, the vehicle

will not remain on the nominal trajectory because of perturbations in the initial

conditions and/or model errors. As a consequence, a guidance law is required that

operates the vehicle in the neighborhood of the suboptimal trajectory.

Neighboring suboptimal control is used to develop a guidance law for

operating a vehicle in the neighborhood of the suboptimal path. Given that a

perturbation away from the desired states occurs, the goal of neighboring

suboptimal control is to determine the change in the nominal control required so

that the overall change in the performance index is minimized and Lne boundary

conditions are satisfied.

The goal of developing a neighboring suboptimal control law is to find a

relationship between deviations from the nominal trajectory and changes required

in the nominal control so that the change in the desired performance index is

minimized and the boundary conditions are satisfied. The derivation of this

7
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control law was originally developed by Hull and Helfrich [3]. A summary of the

derivation is included here for completeness.

As shown in Equations (2.12) and (2.13), the value of the performance

index and the constraints are a function of the parameter vector a. Therefore, the

augmented performance index for the suboptimal control problem is expressed as

if= (ak+.,xi(a))+ vrV(ak+l,xf(a)) = G(ak+,xf (a), v) = G(a, v), (3.1)

where 0 is the performance index, Vr is the vector of final constraints and v is

the vector of Lagrange multipliers. Given a perturbation in the control vector, a,

the change in the performance index is

AJ'= G(a + &, v)- G(a, v). (3.2)

Since the first variation of the performance index vanishes on the optimal path,

the change in the performance index due to a perturbation in the control vector to

second order is approximated as

A 2J= -V.. (a, v)&a. (3.3)

The second derivative matrix G. is calculated numerically for the optimal path.

In Eq. (3.3), the bd s are not independent but constrained by the requirement that

the final constraints be satisfied. Therefore, a relationship is needed to correlate a

perturbation in the control, 6a, to a deviation from the optimal path, &x0, such

that byi = W., 35x1 = 0.

The system dynamics given by Eq. (2.10) relate the state and the control

through a set of differential equations. To relate the variation &a to the

perturbation &x0, the variation of Eq. (2.10) is taken as

3x" = g."x + g.3a, (3.4)
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with boundary conditions

*'o = 'o. , •'r =1(3.5)

3xo = 8xo, (3.6)

V., 16x = 0. (3.7)

To solve Eq. (3.4), a solution is assumed to be of the form

& = ,('r,1)Sxf + T((,1)& (3.8)

with boundary conditions

cb(1,1) I (3.9)

'P(1,1) =0. (3.10)

Substituting the derivative of Eq. (3.8) into the left side of Eq. (3.4), and Eq. (3.8)

into the right side of Eq. (3.4) results in

((D'-g 1D)6xf +(T'I- g1"- g.)&a = 0. (3.11)

To guarantee that Eq. (3.11) is satisfied, the coefficients of 6xf and &a are chosen

to be zero. The outcome of setting the coefficients equal to zero is two

differential equations defining the transition matrices 0 and '. The equations

are

VI)= g'= (3.12)

and

T" = g.F + g. (3.13)

with boundary conditions

Of= I (3.14)

Tf = 0. (3.15)
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By using Eqs. (3.12) and (3.13), 0' and '' can be integrated backwards along the

nominal trajectory from •rf to find (D(r) and ('(r). Knowledge of the history of

the transition matrices allows Eq. (3.8) to be used at any time.

Recall the variation of the system dynamics , given by Eq. (3.4), is subject

to the constraint of Eq. (3.7). Multiplying Eq. (3.8) by 0-' and solving for 8xf

yields

8X1 = -4-"Pcz + -l'x. (3.16)

Applying Eq. (3.16) at 'r0 and substituting this result into Eq. (3.7) leads to

.' I 4C13x 0- Yvcb OTOa= 0o (3.17)

which is a constraint on &a imposed, for a given &x0, as a result of satisfying the

final conditions.

A new optimization problem is now formed to minimize the change in the

performance index given by Eq. (3.3) with respect to &a, subject to the constraint

of Eq. (3.17). The new augmented performance index is written as

I 1 8arG 6a + 8vT( f, dO.1f8X - vI;"1'0 &z). (3.18)

2!

By minimizing Eq. (3.18), the change in the performance index is winimized due

to perturbations in the control and subject to the boundary constraint that relates

the control and the states.

Taking the first variation of Eq. (3.18) results in

•11=-(&aTG. + 3vT yfv)oDIT0 )8(&a). (3.19)

To find a minimum, the first variation must vanish. This implies that

&aTGa + Svfv / (O"IT 0 = 0 (3.20)



needs to be satisfied for a minimum to exist. Transposing Eq. (3.20) and

assuming G2 exists leads to
-a-= T T(-T -T '6v. (3.21)

Substituting Eq. (3.21) into Eq. (3.17) yields
-'r 4)o •oG.:,oT'4 T -v 6v = / 0-'&8Xo (3.22)

which can be solved for 3v as
- -1T( -T T (-1 &(.3

v= -(V 1,, oo0 G0 o o;,T ) o V~ 'xo . (3.23)

Inserting 3v into the right side of Eq. (3.21) leads to the neighboring suboptimal

control law

6a=Ko to, (3.24)

where

Ko = GP oGT ioT (w// G-' T  v4) 0 . (3.25)

is the gain matrix at ;o.

The concept of controllability assumes that to first order a trajectory exists

from a perturbed location, xo, at a given time, 'r, to the final constraint manifold,

or 8 v = 0. In other words, a solution to Eq. (3.4) is desired which satisfies the

boundary conditions given by Eqs. (3.5-3.7). Recall that to solve for the

suboptimal control gains given in Eq. (3.25), a solution to Eq. (3.4) is assumed in

the form of Eq. (3.8). Therefore, the system is assumed to be controllable. This

implies there exists at least one control history that will lead from the current

perturbed location to the final constraint manifold. The neighboring suboptimal

control law determines the one control history that will minimize the change in

the performance index while satisfying the final constraints. Thus, the control law
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given in Eq. (3.24) uses small deviations in the states, &x0, at a given time, T, to

determine small changes required in the parameters, 3a. These small changes are

then added to the optimal values of the control parameters, found by solving the

suboptimal control problem from ro to 'rf, to form a new control history. This

new control history leads to the final constraints while minimizing the change in

the performance index.

This method of control can be extended so that any time ; < -rf,

i = 1,2,..., may be considered ro or the "initial" time and the control history

updated. Because (D and T are functions of r only, the gain K0 can be computed

and stored at each node point along the nominal optimal trajectory. When ro

occurs between node points, the gain is linearly interpolated. Thus, at each

sample time the current states of the vehicle are compared with the states along

the nominal optimal path, the appropriate gains chosen, and the change in the

control parameters determined.



Chapter 4

Application of the Control Law

4.1 Lunar Launch Problem

The neighboring suboptimal control law is demonstrated using a lunar

launch problem. The lunar launch problem involves placing a vehicle into lunar

orbit in minimum time (refer to Fig. 4.1). In addition, constraints are placed on

the vehicle's position and velocity at orbit entry. The control used to place the

vehicle in orbit is the angle of thrust versus time, 6(t). The lunar launch problem

is a free final time problem whose solution provides a control history which

minimizes the performance index

J = t1. (4.1)

The differential equations governing the trajectory of the vehicle are given

by

xr = u (4.2)

. = v(4.3)

4= acos0 (4.4)

v= asin0-g, (4.5)

where a is the thrust acceleration and g is the acceleration due to gravity. The

prescribed initial conditions are

to =0, xo =0, Yo =0, uo =0, V = 0, (4.6)

and the final conditions, or the conditions at orbit entry are

13
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Y •Orbit

Velocity Insertion

u 

1-
rng

x

Figure 4.1 The lunar launch problem

y 1 = 50,000 ft (4.7)

uf = 5,444 ft / sec (4.8)

v1 = 0 ft / sec. (4.9)

The quantities u and v denote the horizontal and vertical velocities, respectively.

To simplify the problem, several assumptions have been made. One

assumption, already implied by the equations of motion, is that all motion and

thrust act in the x-y plane only. In addition, the vehicle's trajectory is assumed to

be over a flat moon, and therefore the direction of lunar gravity remains constant.

Also, the magnitude of lunar gravity is assumed to remain constant throughout the

trajectory. Finally, the ratio of vehicle mass and thrust is assumed constant

throughout the trajectory. This implies that thrust acceleration, a, is constant.

Based on previous research on the lunar launch problem [31. values of

g = 5.32ft / seC2 and a = 20.8ft / sec2 are assumed.
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The current formulation of the lunar launch problem is as a free final time

problem and calls for a continuous control history solution. By using the ideas of

suboptimal control, 'r is introduced as the new variable of integration and is

normalized with respect to the final time. The normalized differential equations

become
x dx =dx dt = ['X ,0(.0x" = g('r,x,6,t1 ). (4.10)

d•r dt dr

The equations of motion for the vehicle are now

I = tfu (4.11)

S= tfv (4.12)

ui= tfacosO (4.13)

S= t, (a sin 0 - g). (4.14)

The initial conditions remain

X =[0 0 0 0] (4.15)

and the limits of integration become

.0= 0, 'f 1.(4.16)

To find the suboptimal control history, nine control nodes are evenly

spaced throughout the optimal trajectory. The control applied at each node, 0i,

and the optimal final time, tf , are used to define the suboptimal control, or

parameter, vector, a. The optimal control vector, a, is defimed as
aT =[O, 02,..., 09, tf]. (4.17)

The final conditions, normalized for numerical reasons to have their

magnitudes of the same order, are placed in a constraint vector, iV', where
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Yf -1
50000

Uf -1 =0. (4.18)
5444

Vf

5444

The optimal control vector, a, is computed using VF02AD, a nonlinear

programming code [4]. The VF02AD program is an extension of a variable

metric method for unconstrained optimization applied to constrained optimization.

The program uses a recursive quadratic programming variable metric method. A

suboptimal solution is searched for until a preset convergence criteria, in this case

10-9 sec, is reached. Convergence occurs when the change in the performance

index between iterations is less then the preset convergence criteria.

4.2 Calculation of the Neighboring Suboptimal Control Gains

Recall that the gain K0 is a function of r and is multiplied by the

deviation from the nominal optimal trajectory to determine the required change in

the nominal control. Since K0 is defined as

Ko = G(D~oy4o ( 0,o G, 1;T,) , (4.19)

to calculate K0 the differential equations for () and 'P must be solved and the

expressions for G. and W evaluated.

To solve for 0 and IF, their corresponding differential equations must be

integrated backwards from v". The differential equation governing 0 is given by

S= 4) = g.(D (4.20)

dv

where

I I IE
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Of = 1. (4.21)

The expression g, is evaluated as the partial of the system dynamics, given in

Eqs. (4.11-4.14), with respect to the states and is given by

0 0 If 01
xdg 0 0 0 tf (4.22)

0 0 o0

The differential equation governing T is

T" = g.T + g. (4.23)

where

'T = 0. (4.24)

In Eq. (4.23), the expression for g. is given by Eq. (4.22). The expression g. in

Eq. (4.23) represents the partial derivative of the system dynamics with respect to

the parameter vector a. Because a is a vector and is expressed as
a T = [01, 02, ... ,1 09, ,,], (4.25)

the chain rule must be applied to form g.. Since there are 10 parameters, g. is

written as
S= g da 15 i__ 10. (4.26)

da da5

The partial derivatives determine the impact a change in one parameter has on

another. The partial derivative relating the change in the system dynamics to the

control vector, a, can be expressed by
dg_ dg or !.g (4.27)
da d 0 d

The expressions are evaluated as
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dx

do
dy

-g= do--= 0 (4.28)do du, -a sin 0 tf
do acos60tJ
do.0 _)

and
dx

_Y U 1
dýg _d,_ 

V
du [ aos6 *(4.29)

Orf du acosO_

dt, _asin6 -g

dv
dt,

To calculate the partial derivative of the parameter vector, a, with respect

to each element of the parameter vector, ai, recall the optimal control, given in the

first 9 elements of a, is linearly interpolated between adjoining nodes as

O(r) = 0,_ + 0i- (oi•,_•) for i-, !5 -r!_,ri (4.30)

and

0 Oi- '(•-z), for i••r:5ri+,. (4.31)o(•)= o ri, ,+-'r,

Therefore, the partial derivatives of Eqs. (4.30) and (4.31) with respect to 0,

respectively, are
= for T,-, 5 r! <, (4.32)

dOi -,r,-,

and



19

=1- for r,' 5 r 5 (4.33)-W0 - Ti., - •i

Both Eqs. (4.32) and (4.33) are valid for all interior node points. However, each

equation breaks down at one of the boundary nodes because either r-I or T+,

does not exist. Therefore, only Eq. (4.33) is used over the first interval and only

Eq. (4.32) is used over the last interval. The last element of a is tf, and the partial

of tf with respect t to is one. Over all other intervals, the partial derivative is

zero.

The matrix g. is expressed, using Eqs. (4.28), (4.29), (4.32) and (4.33), as

0 ... 0 u

0 -.. 0 v
g -a sin 0 t -t .dO

g. dsinO t5 -9- cosO 9 (4.34)

acos 0 tf d ... ado O fA i
L '9~01 W

o~coO t:ool acosO t¢--. asinO- g

The derivative, G., represents the second derivative effect of a change in

the parameter vector on the performance index and can be determined

numerically. Central differences are employed, and each element of a is

perturbed. The effect of this perturbation on the performance index is computed.

The partial derivative of the constraints with respect to the state vector is

represented by Ws,. This forms a constant matrix given by

0 0 0
50,000

, 0 0 0 (4.35)
I 5,444
0 0 0

5,444
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By using Eq. (4.35), the values computed for G., and the solution to the

differential equations for (D and WP, the general gain matrix given in Eq. (4.19)

can be solved at any control node. These gains, multiplied by the deviation away

from the nominal trajectory at the corresponding node point, yield the required

change in the control. Because the first column in Eq. (4.35) is all zeros, the first

column of the gain matrix will also be all zeros. This is not surprising because the

downrange is not constrained, and therefore any deviation in the downrange from

the nominal trajectory will not affect the control. This contrasts all of the other

states, where any de&iation from the nominal trajectory will require a change in

the control to insure the final constraints are satisfied. As a result, only the last

three columns of the gain matrix will be stored.

Eight gain matrices are computed and correspond to the first eight control

nodes. The last control node is at the final constraint, and therefore a gain matrix

can not be computed because there are not enough nodes to satisfy the boundary

conditions. If the gain matrix associated with the ninth node could be computed,

however, it would call for an infinite control change to correct for any deviations

from the final constraints. As a result, the gains from the previous two nodes will

be used to extrapolate the change in the control over the last interval. The gain

matrix, K,, contains information to change the value of the control at node i and

all nodes after node i, given a deviation from the nominal trajectory occurred at

node i. The control law will be applied throughout the trajectory, however, and

only the gains associated with node i and the node immediately following node i
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are needed for applying the control law. Therefore, only these gains will be stored

from the gain matrix K,.

4.3 Interpolating the Change in the Control

The eight gain matrices provide the required changes in the control nodes

from node i to the final constraint manifold for a deviation from the nominal

trajectory occurring at node i. The change in the control nodes are then added to

the nominal controls to provide a new control history. If the deviation from the

nominal trajectory occurs between nodes, the gains from two nodes are used and

the change in the control linearly interpolated between the two nodes to form a

new control history. Previous research by Nowack [2] has successfully used a

sample hold technique for interpolating the change in the control between nodes.

The nominal control, however, is linearly interpolated throughout the sample step.

Therefore, a new method of interpolating the change in the control is implemented

which will linearly interpolate the change in the control throughout the sample

step.

Assuming a deviation from the nominal trajectory occurred at node i, the

change in the control nodes after node i are given by

=0i~j = ki.j.ylyi + ki.j.,Sui + kij.,,vi, (4.36)

where
i = current node where state deviations occur

j = node where the change in the control is applied

byi = deviation in y from nominal trajectory

34, = deviation in u from nominal trajectory

i8vi = deviation in v from nominal trajectory
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and the gain matrix is partitioned as

K ,.4= 4. (4 .3 7 )

ki,,~ k,.j, k,.j., 5v

The expression EO.., is only valid when i : j, because it otherwise implies

changes to control nodes that have already been passed. Also, notice that all

terms involving x have been dropped because any deviation in this state would not

affect the control. Realize also that Eq. (4.37) uses deviations in three states to

determine the change in the control. This is in contrast to Nowack [2] in which

horizontal velocity, u, is used as the reference variable. No deviation, 6ui, ever

exists, and therefore only deviations in y and v are used to determine the change in

the control.

The change in the control nodes, given in Eq. (4.36), are added to the

nominal controls, 00,, at each of the remaining nodes. The new control history is

formed by linearly interpolating between the new control nodes, 0,, where

Oj = 00i + 6O•,j. (4.38)

If the deviation from the nominal trajectory occurs between nodes,

however, no explicit gain matrix exists and the expression 606.j cannot be

computed directly. Therefore, the gain matrices corresponding to the control

nodes before and after the deviation must be used to interpolate the appropriate

change in the control. If the deviation from the nominal trajectory had occurred at

node i, a new control history could be determined from node i to the final

constraint manifold using 80i.j. Similarly, if the deviation had occurred at node

i+l, a different control history from node i+1 to the final constraint manifold
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1, change in contol for

from node 1 801,4 between nodes 1 and 2

1 t 2 3 4 5 node
time

t t2 t3 t4 t5

Figure 4.2 Change in the control

could be determined using 30i+.j. It seems reasonable, therefore, that for a

deviation occurring between two nodes there exists another control history that

lies somewhere between the two control histories. This new control history is

likewise determined by using a change in the control that lies somewhere in

between 80,.j and 60,+l.j.

The change in the control for a deviation occurring at time t, between

nodes 1 and 2 (see Fig 4.2), can be determined by first assuming that the deviation

from the nominal trajectory occurred at the previous node, node 1, and by then

computing the corresponding change in the control, 60,,,, where

1501., = k I.I./yIy + k •.., u + k 8v., - (4.39)

Now, assume the deviation occurred at the next node, node 2, and compute the

change in the control, 802.2, from node 2 to the final constraint manifold using

802.2 = k2.2.,3y 2 + k2.2.8A 2 + k2.v.15v2 . (4.40)
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To determine the appropriate change in the control between nodes, the

sample hold technique used by Nowack [2] calls for linear interpolating between

80,., and 86022 to find 30A. This quantity, given by

80OA = 801. '0.2-F 6" 3 (t -t), (4.41)
t2 -tl

is then held constant throughout the sample step and added to the nominal control.

The nominal control, however, is linearly interpolated throughout the sample step.

Therefore, to also linearly interpolate the change in the control throughout the

sample step, the quantity 80, is calculated. This quantity is found by linearly

interpolating the change in the control between the control nodes which

immediately follow the two nodes where the deviation is assumed to have

occurred. In this case the change in the control required at node 2, due to a

deviation occurring at node 1, is given by 801,2. The change in the control

required at node 3, due to a deviation occurring at node 2, is given by 802.3- This

quantity 80, (see Fig. 4.2) is found by linearly interpolating between 801.2 and

86023 and is given by

808 = 60, 2 + ' 2 4 (t- (4.42)

S t3 - h

The two quantities 8 0A and 80, are now used to define the change in the control

required for a deviation from the nominal trajectory occurring at time t between

nodes 1 and 2. During the sample step, the change in the control is linearly

interpolated between 60A and 80, as

50=80A + 808-50A (t-t') (4.43)
t2 - tl

and added to the nominal control to form the new control.
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This technique could be used to determine the entire new control history

from the point of the deviation to the final constraint manifold, but this is not

required. At each sample time, the previous control history would be discarded

and a new control history computed. Therefore, the change in the control history

is computed only between the two nodes needed to linear interpolate the change in

the control.

The last control node is located at the final constraint manifold. There

does not exist a gain matrix at this node. As a result, the gain matrices from the

previous two nodes are extrapolated over the last interval. The ideas and concepts

previously discussed remain valid, but the equations are slightly altered to linearly

extrapolate, instead of interpolate, over the last interval.

4.4 Calculation of the Reference Time

All the expressions are now known to solve the gain matrix at each node.

The interpolation of the gain matrices between nodes to determine the change in

the control given a specific reference time, t0, is also understood. It is not known,

however, at what specific time, t., the gains are to be interpolated. Recall that the

gains, as well as the nominal control, are evaluated with respect to 'r and that r is

related to both a time on the nominal trajectory and the optimal final time, tf..

Assuming the initial conditions are the same at the beginning of the trajectory, the

final time of the perturbed trajectory is assumed the same as the optimal final time

of the nominal trajectory. But, as soon as some deviation from the nominal

trajectory occurs, the optimal final time is no longer realizable. If the current time

on the perturbed trajectory is used to determine the appropriate gain to apply, the
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obvious problem arises when the final time of the perturbed trajectory is greater

than the final time of the nominal trajectory [5,6]. The gains and the nominal

control are known only until r = 1, which corresponds to a time equal to tf,,.

Therefore, to insure that both gains and a nominal control are available throughout

the trajectory, a method which incorporates time-to-go is used to reference both

the nominal control and the gains associated with the change in the nominal

control.

The lunar launch problem is a free final time problem whose nominal

solution yields an optimal final time, control history, and trajectory to the final

constraint manifold. The controls are applied by determining the location of the

vehicle on the nominal trajectory with respect to zr. If the vehicle remains on the

nominal trajectory, the final time does not change, and the current time is used to

reference the control. When the vehicle deviates from the nominal trajectory,

however, the final time changes and the location of the vehicle with respect to the

nominal trajectory is unknown. Thus, it is not known what gains should be used

to determine the change in the control, or even what nominal control should be

applied. Therefore, using the ideas of Kelley [5] and Speyer and Bryson [6], a

location on the nominal trajectory is found such that the rime-te-go bo:h on the

nominal trajectory and the perturbed trajectory is the same. This provides a

location of the vehicle with respect to the nominal trajectory and a reference time

to determine the nominal control and the change in the control. Having both the

nominal and perturbed trajectories always referenced at the same time-to-go

guarantees that a nominal control and change in the control will be available

throughout the entire trajectory, regardless of the perturbed final time.
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Figure 4.3 Relating time-to-go

The change in the final time caused by a deviation from the nominal

trajectory is expressed as

If, - If. = -to, (4.44)

where tf, is the perturbed final time, tf:. is the optimal final time on the nominal

trajectory, t is the actual time on the perturbed trajectory and to is a reference time

on the nominal trajectory (see Fig 4.3). Equating time-to-go on the perturbed and

nominal trajectories results in
tf- t = tf., - to + (t/, - to), (4.45)

where 3(t... - to) is the difference between time-to-go on the perturbed

trajectory and the time-to-go on the optimal trajectory at the reference time, to.

Recall the last element of the parameter vector, a, is defined as tf. The variation

of this expression defines the change in the final time, where the final time is the

time from the reference time, to, to the optimal final time, tf.,. The gains used at



28

the reference time, to, were evaluated by integrating the transition matrices, given

by Eqs. (3.12-3.15), backwards from rf, or tf,,, to the control node where the

gains are stored. The control nodes are identified in each integration as T0, but

since the optimal thial time is known, the control nodes could also be referenced

by their corresponding reference time, t0. Thus, Stf relates a change in time, not

over the entire trajectory, but from the reference time, to, to the end. Therefore,

the quantity Stf can be written as 8(t,, - to), or the change in the time-to-go

from the nominal trajectory to the perturbed trajectory.

The goal is to find a reference time, to, where the time-to-go on each

trajectory is the same. This implies that btf is equal to zero. If to is the reference

time where the time-to-go on both trajectories is the same, then a time earlier than

to will yield a positive btf and a time after to a negative Stf (see Fig. 4.3). Thus,

a one-dimensional search routine is used to search for a reference time where Stf

is zero. Because the routine searches for a minimum, the input for the search is

the reference time from the previous step and a search is made over (4tf)2. The

output of the one-dimensional search is a new reference time on the nominal

trajectory. This new reference time corresponds to the new time on the perturbed

trajectory and indicates where St, is zero. This new reference time is then used to

determine the nominal control and the change in the control required to satisfy the

final constraints. The difference in the actual time on the perturbed trajectory, t,

and the new reference time, to, furnishes a new estimate of the perturbed final

time using Eq. (4.44).
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Forcing the time-to-go on the perturbed trajectory to be the same as the

time-to-go on the nominal path assumes that there are no further perturbations in

the system. If the previous perturbations in the system are due to errors in the

model, they will not be accounted for in the new control history. The new control

history is based on the same model used to generate the optimal control vector.

Thus, the actual perturbed final time is not known until it is actually reached.

Throughout the trajectory, the process continues to update the perturbed final time

and moves it closer to the actual final time.

4.5 Simulation

A simulation using the lunar launch problem is made to test the guidance

law. The differential equations of motion for the vehicle are integrated using a

fourth-order Runge-Kutta integrator and a 4 second sample step. Deviations from

the nominal trajectory are introduced by perturbing the values of thrust

acceleration or lunar gravity ± 5% from their nominal values. The nominal

trajectory is integrated to the appropriate reference time and deviations in the

states are measured. The simulations are accomplished closed loop using both the

linear interpolated control and change in the control. The results are compared

with simulations obtained by Nowack [2] in which the reference variable was

changed to horizontal velocity.



Chapter 5

Results

5.1 Nominal Suboptimal Trajectory

The nine node suboptimal trajectory and corresponding final time are first

calculated using the nonlinear programming code VF02AD. The result of this

yields the following control history:

01" 0.45427200240" 26.02786848706"
02 0.40895291023 23.43127577463

03 0.36254811487 20.77247685115

04 0.31389511079 17.98486505714

Os = 0.26421940074 rad = 15.13865652683 deg.

06 0.21307434261 12.20826055367 (5.1)

07 0.16035307712 9.18755455052

06 0.10711091552 6.13700339899

_09_ 0.05217078106 2.98916556845

The vehicle follows the nominal trajectory using the control history given in Eq.

(5.1) and reaches orbit with the final conditions:

t, = 272.70605 sec (5.2)

x1 = 729,138.05373 ft (5.3)

Yf = 50,000.00000 ft (5.4)

u= 5,444.00000 ft/sec (5.5)

v= 0.00000 ft/sec. (5.6)

30
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5.2 Neighboring Suboptimal Control Gains

The gain calculations are made using the nominal control history given in

Eq. (5.1). The gain program first integrates the equations of motion to the final

constraint manifold and then integrates backwards to each of the control nodes.

Only certain control gains are required to be stored, because the guidance law is

applied throughout the trajectory. These correspond to gains associated with the

change in the control made at the node where the deviation occurred, the gains

associated with the change in the control made at the following node, and the

gains associated with the change in the time-to-go. The result of the gain

calculations for the change in the control are given in Table 5.1. For a deviation

occurring at each node, the gains associated with the change in the control at that

node are shown in the first row, while the second row shows the gains associated

with a change in the control at the following node. All gains associated with x

are zero and have been omitted from the table. The gains associated with the

change in the time-to-go are given in Table 5.2, where again the gains associated

with x are zero and have been omitted.

An obvious difference in the gains presented by Nowack [21 and the gains

presented in Tables 5.1-5.2 is the number of gains. When horizontal velocity is

the reference variable, it is not a state and no deviation in horizontal velocity

exists from the nominal trajectory at the update point. Therefore, there is no gain

associated with a deviation in horizontal velocity. In addition, time has been

included in the state vector instead of horizontal velocity. Because time has no

impact on satisfying the constraints, the gains associated with time are zero and
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NODE NODE GAINS
U V

1 -0.369E-5 0.679E-4 -0.673E-3
-0.294E-5 0.539E-4 -0.575E-3

2 -0.284E-5 0.172E-4 -0.456E- 3
-0.462E-5 0.866E-4 -0.785E-3

3 -0.3721E-5 0.205E-4- -0.510E-3

-0.617E-5 0.978E-4 -0.911E-34 - -0.54E=-5 0.321E-4 -0.623E-3

-0.8421-5 0.107E-3 -0.106E-2
5 -0.888E-5- 0.521E-4 -0.806E-3

-0.120E:-4 0. 114E-3 -0.125E-1!

6 - 0.168E-4 0.893E-4 -0.1 14E-2
-6.174E-4 0.104E-3 -0.149E-27 -0.429E-4 0.178E-3r -0.194E-2
-0.194Er-4 0.709E-5 -0.159E-2

8 -0.248E-3 0.583E-3 -0.560E-U
0.247E-3 -0.109E-2 0.271E-2

Table 5.1 Control gains associated with a change in the control

not presented by Nowack. On the other hand, three gains are required when time

is the reference variable. These gains are required to account for deviations from

the nominal trajectory in each of the constrained states. Only x in the state vector

does not impact the final constraints, and therefore only the gains associated with

x are zero.

5.3 Trajectory Simulation

Simulations using the guidance law are compared with results obtained by

Nowack [2]. Tables 5.3 and 5.4 show results when perturbations in thrust

acceleration or lunar gravity are added into the system. Each table lists the cause
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NODE NODE GAINS
U V

I -0,776E-7 -0.487E-4 -0.237E-4
2 -0.887E-7- -0.556E-4 -0.241E-4
3 -0.104E-6 -0.649E-4 -0.w-4
4 -0.124E-6 -0.779E-4 -0.253E-4
5 -0.156E-6 -0.973E-4 -0.263E-4
6 -0.208E-6 -0. 13E-3 -021-47 -0.313E-6 -0.195E-3 - -0.1M5E-4
8- -0.632E-96 -0.389E--3 I-0.418E-4

Table 5.2 Control gains associated with time-to-go

of the perturbation as well as the optimal final time if the cause of the perturbation

had been assumed when computing the suboptimal trajectory. For each

perturbation, the first row shows the deviation in the final values of each of the

constrained states. The second row shows the same deviations for simulations

accomplished using the guidance law presented by Nowack [2].

The actual optimal final time, shown in Tables 5.3 and 5.4, is found using

the same optimization code that solved for the nominal control and optimal final

time. The optimization code determines the actual final time when the nominal

value for thrust acceleration or lunar gravity is replaced by the perturbed value for

thrust acceleration or lunar gravity. The perturbed final times of both guidance

laws are close to the actual optimal final time. The difference in the perturbed

final time and the actual final time is under 0. 1 seconds in all cases.

The results of the simulation also show no large disparity between

guidance laws in terms of meeting endpoint constraints. Both laws handle

deviations caused by thrust acceleration perturbations better, as evidenced by
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smaller position errors. Velocity errors are approximately the same regardless of

the cause of the deviation or the guidance law used.

A comparison of the guidance laws throughout the trajectory is presented

in Figs. 5.1-5.8. Figures 5.1 and 5.4 show the deviation in vertical velocity of the

perturbed trajectory from the nominal trajectory when the control updates are

made for each of the guidance laws. The perturbed trajectory remains closer to

the nominal trajectory with time as the reference variable, regardless of the

perturbation in the system. The deviations in vertical velocity, shown in Figs. 5.2

and 5.5, show only a slight improvement with time as the reference variable and

when the deviations are caused by perturbations in lunar gravity. The maximum

deviation in vertical velocity caused by errors in thrust acceleration are slightly

reduced with time as the reference variable. However, deviations from the

nominal trajectory are not always smaller with time as the reference variable than

when horizontal velocity is the reference variable.

The deviation in horizontal velocity from the nominal trajectory is zero

when horizontal velocity is the reference variable. Therefore, it is not shown in

Figs. 5.3 and 5.7. The magnitude of the deviations in horizontal velocity with

time as the reference variable, however, is smaller than deviations in vertical

velocity.

Figures 5.4 and 5.8 show the norm of the error of the three constrained

states throughout the trajectory. Both guidance laws have similar norms

throughout the trajectory, regardless of the cause of the deviation. The norm with

time as the reference variable is slightly smaller throughout the trajectory when

the deviations are caused by perturbations in lunar gravity. Perturbations in thrust
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accelerations lead to smaller norms overall. However, neither guidance law yields

a smaller norm throughout the trajectory. Both guidance laws show an obvious

increase in the norm when the last control node is passed.
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a
% change Reference Perturbed Final Deviation in States

in cc Variable Final Time
(actual (sec) y u V

rual time)

19.760 -5 t 287.957 8.958 0.241 -2.868

(287.950) u 287.947 10.530 0.0 -2.821

19.968 -4 t 284.764 7.724 0.192 -2.296

(284.759) U 284.756 8.931 0.0 -2.263

20.176 -3 t 281.645 6.209 0.143 -1.716

(281.642) u 281.639 7.086 0.0 -1.703

20.384 -2 t 278.596 4.445 0.096 -1.152

(278.595) u 278.593 4.988 0.0 -1.140

20.592 -1 t 275.619 2.390 0.049 -0.588

(275.618) u 275.616 2.630 0.0 -0.573

21.008 +1 t 269.857 -2.664 -0.052 0.588

(269.859) u 269.860 -2.909 0.0 0.579

21.216 +2 t 267.070 -5.695 -0.124 1.200

(267.073) u 267.076 -6.111 0.0 1.167

21.424 +3 t 264.343 -9.078 -0.155 1.824

(2-.347) u 264.351 -9.615 0.0 2.369

21.632 +4 t 261.672 -12.783 -0.254 2.434

(261.679) u 261.684 -13.435 0.0 2.369

21.840 +5 t 259.053 -16.990 -0.418 3.127

(259.068) u 259.073 -17.582 0.0 2.987

Table 5.3 Results for errors in modeling thrust acceleration
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g
9 % change Reference Perturbed Final Deviation in States

(sf in g Variable Final Time
(ac"ua (sec) y u V

_ inia time)

5.054 -5 t 271.838 75.079 0.175 -3.333

(271.780) u 271.850 65.178 0.0 -2.705

5.107 -4 t 271.999 60.051 0.139 -2.656

-2(271.961) u 272.005 52.081 0.0 -2.160

5.160 -3 t 272.166 45.022 0.105 -1.996

(272.144) u 272.168 39.009 0.0 -1.616

5.214 -2 t 272.339 29.987 0.070 -1.332

(272.329) u 272.340 25.968 0.0 -1.074

5.267 -1 t 272.520 14.979 0.035 -0.667

(272 516) u 272.519 12.963 0.0 -0.536

5.373 +1 t 272.899 -14.909 -0.035 0.664

- (272.898) u 272.901 -12.914 0.0 0.532

5.426 +2 t 273.098 -29.784 -0.070 1.328

(273.092) u 273. 105 -25.775 0.0 1.060

5.480 +3 t 273.305 -44.608 -0.105 1.989

(273.289) u 273.316 -38.578 0.0 1.584

5.533 +4 t 273.517 -59.380 -0.140 2.648
- (273.488) u 273.535 -51.317 0.0 2.103

5.586 +5 t 273.737 -74.098 -0.174 3.302

(273.690) u 273.762 -63.989 0.0 2.616

Table 5.4 Results for errors in modeling lunar gravity
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Figure 5.1 Deviation in vertical position for a thrust acceleration perturbation
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Figure 5.2 Deviation in vertical velocity for a thrust acceleration perturbation
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Figure 5.5 Deviation in vertical position for a lunar gravity perturbation
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Figure 5.6 Deviation in vertical velocity for a lunar gravity perturbation
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Figure 5.7 Deviation in horizontal velocity for a lunar gravity perturbation
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Figure 5.8 Norm of error for a lunar gravity perturbation



Chapter 6

Conclusions

The purpose of this research is to demonstrate the neighboring extremal

guidance law using time as the reference variable. The use of horizontal velocity

as the reference variable has been previously demonstrated by Nowack [2]. By

using current time as the reference variable, the location of the vehicle on the

perturbed trajectory is unknown, since the final time is continually changing.

Therefore, a one-dimensional search is used to locate the vehicle on the perturbed

trajectory by relating time-to-go on the perturbed trajectory to the same time-to-go

on the nominal trajectory. This provides the appropriate reference time to

determine the nominal control and the change in the control.

The guidance law, with time as the reference variable, is demonstrated

using the lunar launch problem. The lunar launch problem involves placing a

vehicle into lunar orbit in minimum time while insuring that certain orbit entry

parameters are satisfied. The perturbed trajectory is integrated using equations of

motion that have been altered from those equations of motion used to generate the

nominal trajectory. These altered equations of motion are determined by

changing te values of thrust acceleration or lunar gravity. The states at each

sample time are then compared to the states on the nominal trajectory. A

reference time is found on the nominal trajectory such that the time-to-go on both

trajectories is the same. The nominal control at this reference time and the change

42
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in the nominal control caused by deviations in the states are used to determine the

new control history.

The results of this simulation are compared with results obtained using

horizontal velocity as the reference variable. In all cases, the results are

comparable. When thrust acceleration is perturbed and time is used as the

reference variable, the final value of the states differ from Nowack's [2] results by

less then 2 feet in position and by less the 0.5 ft/sec in velocity. The differences

are slightly larger, 10 feet and 1 ft/sec, when the perturbations are caused by

errors in lunar gravity.

Both laws display a noticeable growth in the norm of the error after the

last node point is reached. This is expected, because the change in the control

over the last interval is an extrapolation from the previous interval. This leads to

an obvious conclusion that meeting the final constraints exactly is van

impossibility. With this is mind, no definition of an acceptable error has been

given, making it difficult to determine how well the guidance law behaves. One

definition, used by Helfrich [3], has the criterion that the percentage error in the

final states should not exceed the percentage error in the perturbations. This

criteria seems too restrictive when the final constraint is zero. Therefore, realistic

problems need to be used in which realistic and acceptable errors are defined.

Areas of further research include understanding time-to-go and its

relationship to interpreting the change in the control. This research has tacitly

assumed, and not satisfactorily explained, a relationship between time-to-go and

the determination of the appropriate change in the control. However, it has

demonstrated through results that a relationship exists. Also, an investigation of
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better terminal guidance is required. Either increasing the number of control

nodes or shifting the nodes closer to the final constraints may increase the

accuracy of the terminal phase of the trajectory. This research has used linear

extrapolation over the last interval, but it is known that the gains increase to

infinity as the final constraints are reached. Therefore, a different method of

extrapolating the gains over the last interval might yield better results.
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